Terthiophene on Au(111): A scanning tunneling microscopy and spectroscopy study
نویسندگان
چکیده
Terthiophene (3T) molecules adsorbed on herringbone (HB) reconstructed Au(111) surfaces in the low coverage regime were investigated by means of low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) under ultra-high vacuum conditions. The 3T molecules adsorb preferentially in fcc regions of the HB reconstruction with their longer axis oriented perpendicular to the soliton walls of the HB and at maximum mutual separation. The latter observation points to a repulsive interaction between molecules probably due to parallel electrical dipoles formed during adsorption. Constant-separation (I-V) and constant-current (z-V) STS clearly reveal the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals, which are found at -1.2 eV and +2.3 eV, respectively. The HOMO-LUMO gap corresponds to that of a free molecule, indicating a rather weak interaction between 3T and Au(111). According to conductivity maps, the HOMO and LUMO are inhomogeneously distributed over the adsorbed 3T, with the HOMO being located at the ends of the linear molecule, and the LUMO symmetrically with respect to the longer axis of the molecule at the center of its flanks. Analysis of spectroscopic data reveals details of the contrast mechanism of 3T/Au(111) in STM. For that, the Shockley-like surface state of Au(111) plays an essential role and appears shifted outwards from the surface in the presence of the molecule. As a consequence, the molecule can be imaged even at a tunneling bias within its HOMO-LUMO gap. A more quantitative analysis of this detail resolves a previous discrepancy between the fairly small apparent STM height of 3T molecules (1.4-2.0 nm, depending on tunneling bias) and a corresponding larger value of 3.5 nm based on X-ray standing wave analysis. An additionally observed linear decrease of the differential tunneling barrier at positive bias when determined on top of a 3T molecule is compared to the bias independent barrier obtained on bare Au(111) surfaces. This striking difference of the barrier behavior with and without adsorbed molecules is interpreted as indicating an adsorption-induced dimensionality transition of the involved tunneling processes.
منابع مشابه
Adsorption characteristics of Er3N@C80on W(110) and Au(111) studied via scanning tunneling microscopy and spectroscopy
We performed a study on the fundamental adsorption characteristics of Er3N@C80 deposited on W(110) and Au(111) via room temperature scanning tunneling microscopy and spectroscopy. Adsorbed on W(110), a comparatively strong bond to the endohedral fullerenes inhibited the formation of ordered monolayer islands. In contrast, the Au(111)-surface provides a sufficiently high mobility for the molecul...
متن کاملCo nanoislands on Au(111) and Cu(111) surfaces studied by scanning tunneling microscopy and spectroscopy.
Co nanoislands on the Au(111) and Cu(111) surfaces have been studied by scanning tunneling microscopy and spectroscopy. The experimental results showed that Co nanoislands prefer to aggregate at the step edge and dislocation sites on the reconstructed Au(111) surface and at the step edge on the Cu(111) surface, respectively. In addition, based on dZ/dV-V spectra, in both the Co/Au(111) and the ...
متن کاملExperimental observation of a band gap in individual Mn12 molecules on Au(111)
The authors report on the electronic properties of individual molecules of two Mn12 derivatives chemically grafted on the functionalized Au 111 surface studied by means of ultrahigh vacuum scanning tunneling microscopy/spectroscopy at room temperature. Reproducible current-voltage curves were obtained from both Mn12 molecules, showing a well defined wide band gap. In agreement with the tunnelin...
متن کاملSingle-molecule magnets: a new approach to investigate the electronic structure of Mn12 molecules by scanning tunneling spectroscopy.
A new approach to the deposition of Mn12 single-molecule magnet monolayers on the functionalized Au(111) surface optimized for the investigation by means of scanning tunneling spectroscopy was developed. To demonstrate this method, the new Mn12 complex [Mn12O12(O2CC6H4F)16(EtOH)4].4.4CHCl3 was synthesized and characterized. In MALDI-TOF mass spectra the isotopic distribution of the molecular io...
متن کاملSub-monolayer film growth of a volatile lanthanide complex on metallic surfaces
We deposited a volatile lanthanide complex, tris(2,2,6,6-tetramethyl-3,5-heptanedionato)terbium(III), onto metal surfaces of Cu(111), Ag(111) and Au(111) in vacuum and observed well-ordered sub-monolayer films with low temperature (5 K) scanning tunneling microscopy. The films show a distorted three-fold symmetry with a commensurate structure. Scanning tunneling spectroscopy reveals molecular o...
متن کامل